

Dimensionierung eines nachgiebigen Ausbaus in druckhaftem Gebirge

Workshop "Tunnelbauforschung in Leoben, Schwanau und Bochum"

30.09.2013 Ruhr-Universität Bochum

Dipl.-Ing. Anna-Lena Hammer

Lehrstuhl für Tunnelbau, Leitungsbau und Baubetrieb Prof. Dr.-Ing. Markus Thewes

- Motivation
- Vorgehen
- Versuche
- Berechnungen
- Zusammenfassung und Ausblick

Motivation

Ausbaudimensionierung einer nachgiebigen Schale

- Nachgiebiger Ausbau mit Spritzbetonschale und Stauchelementen hat sich in druckhaftem Gebirge bewährt
- Stauchelemente ermöglichen kontrollierte Stauchung bei Ausnutzung der Anfangsfestigkeit des Spritzbetons
 - > Berechnungsmethoden für den Einsatz von Stauchelementen weiterentwickeln

Motivation

Ausbaudimensionierung einer nachgiebigen Schale

- Nachgiebiger Ausbau mit Spritzbetonschale und Stauchelementen hat sich in druckhaftem Gebirge bewährt
- Stauchelemente ermöglichen kontrollierte Stauchung bei Ausnutzung der Anfangsfestigkeit des Spritzbetons
 - > Berechnungsmethoden für den Einsatz von Stauchelementen weiterentwickeln

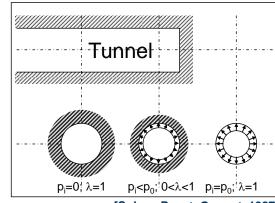
- Motivation
- Vorgehen
- Versuche
- Berechnungen
- Zusammenfassung und Ausblick

Vorgehen

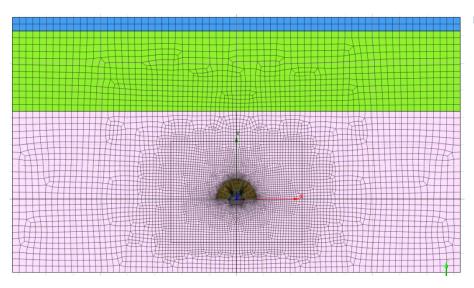
Versuche

- Versuche zum Last-Verformungsverhalten von Stauchelementen unter gleichen Ausgangsbedingungen
 - Unterschiedliche Randbedingungen bilden Einbauungenauigkeiten und Gebirgsbewegungen ab
- Auswertung von Vortriebsdaten zur Festigkeitsentwicklung von Spitzbeton verschiedener Projekte und Versuche
 - Betrachtung mehrerer Ansätze zur Beschreibung von Spritzbeton
 - Versuche an Spritzbeton zur Gewinnung von Parametern zur realitätsnahen Analyse

Hammer: Dimensionierung eines nachgiebigen Ausbaus in druckhaftem Gebirge



Vorgehen



Berechnungen

- analytische Berechnungsmethoden
 - zur Vordimensionierung und zur Abschätzung des Systemverhaltens
 - als Anwendungsempfehlung möglicher Stauchelemente für Projektfall

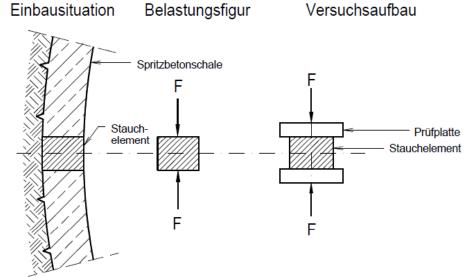
[Sulem, Panet, Guenot, 1987]

- numerische Berechnungsmethoden
 - Darstellung der Ausbauelemente: Spritzbeton, Stauchelemente, Anker
 - Untersuchung des Einflusses der Gebirgsqualitäten

- Motivation
- Vorgehen
- Versuche
 - Stauchelemente
 - Spritzbeton
- Berechnungen
- Zusammenfassung und Ausblick

Einbausituation

Versuche



Versuchsaufbau Stauchelemente

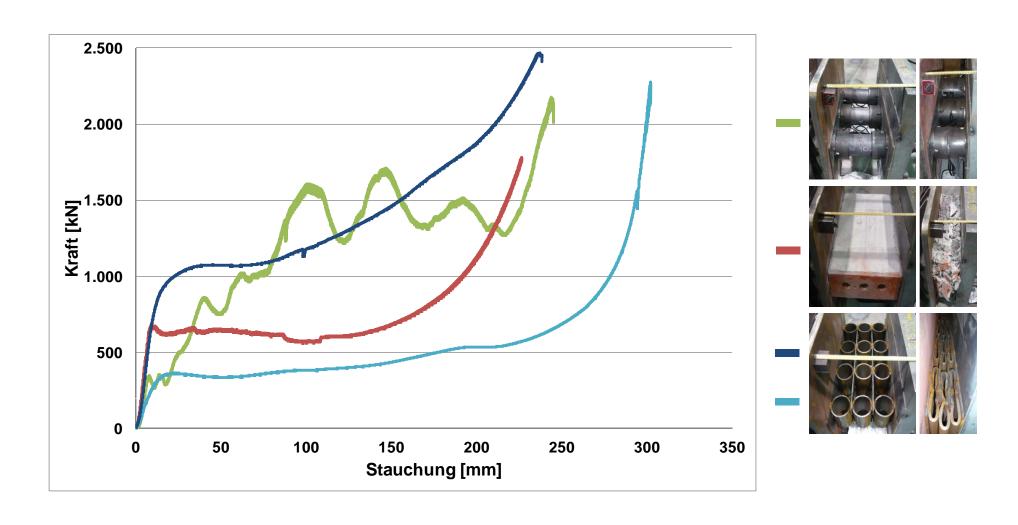
<u>Versuch I – zentrische Belastung</u>

- Normalfall Belastung im Tunnelbau
- Orientierung an Tauerntunnel nachträgliche Gegenüberstellung der Daten möglich

Belastungsfigur

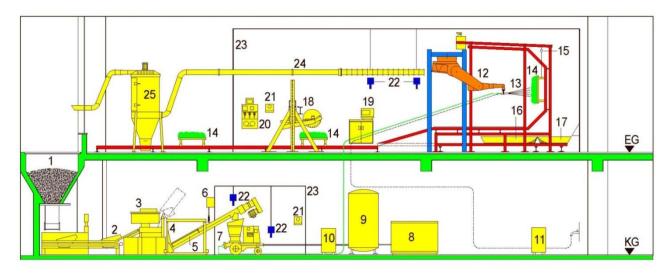
Prüfplatte Stauchelement Stahlkeil

<u>Versuch II – exzentrische Belastung</u>


- Berücksichtigung von 5%-iger Schiefstellungen als Einbautoleranz
- Scherbeanspruchung wirkt auf Stauchelement

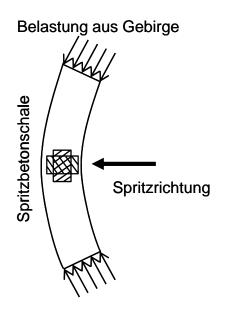
Versuchsaufbau

Versuch I – zentrische Belastung



Spritzbetonversuche

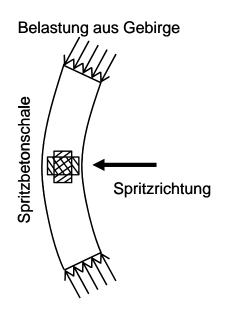
- Spritzbetonversuche im Versuchsstand
- Spritzbetonversuche anhand Rezeptur Tauerntunnel, um Festigkeitsentwicklung besser abzubilden und Daten für numerisches Modell zu gewinnen
 - Voruntersuchung, ob Bohrkernentnahme parallel zur Spritzrichtung zu reduzierten Druckfestigkeiten führt



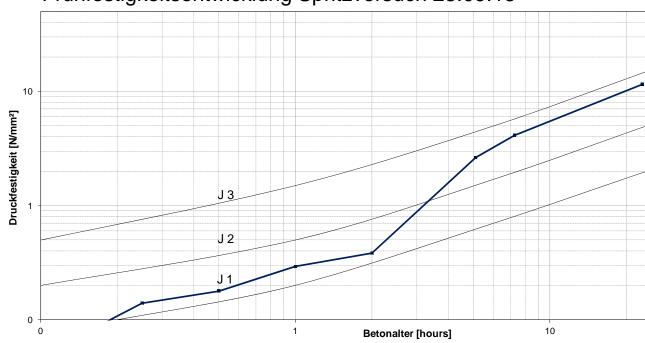
SCOTT – Sprayed **CO**ncrete **T**esting unit for **T**unnelling

Spritzbetonversuche

- in Spritzbetonschale wirken größten Druckspannungen senkrecht zur Spritzrichtung
- Annahme: Bohrkernentnahme parallel zur Spritzrichtung führt zu reduzierten Druckfestigkeiten bis zu 20 %


- Bestimmung von Druckfestigkeiten zu angegebenen Zeitpunkten
- Kontinuierliche und zyklische Belastung zur Bestimmung des E-Moduls

	Prüfung		
	Frühfestigkeit	nach Norm	
	Druckfestigkeit	2 d	
	Druckfestigkeit	4 d	
	Druckfestigkeit	7 d	
	Druckfestigkeit	10 d	
	Druckfestigkeit	14 d	
	Druckfestigkeit	21 d	
	Druckfestigkeit	28 d	

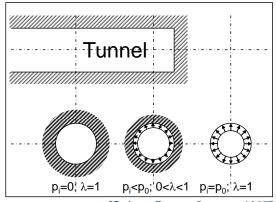


Spritzbetonversuche

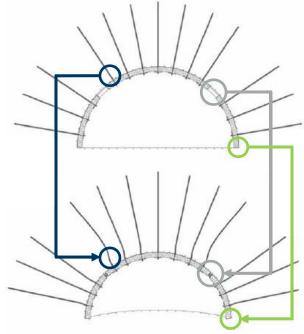
Frühfestigkeitsentwicklung Spritzversuch 23.09.13

Prüfalter	Druckfestigkeit in Spritzrichtung	Druckfestigkeit gegen die Spritzrichtung	Abweichung
2d	18,3 N/mm²	18,3 N/mm²	0 %
4d	20,9 N/mm ²	19,9 N/mm²	-4,8 %
7d	22,5 N/mm²	21,2 N/mm²	-5,8 %

- Motivation
- Vorgehen
- Versuche
- Berechnungen
- Ergebnisse
- Zusammenfassung und Ausblick


Analytische Berechnungsverfahren

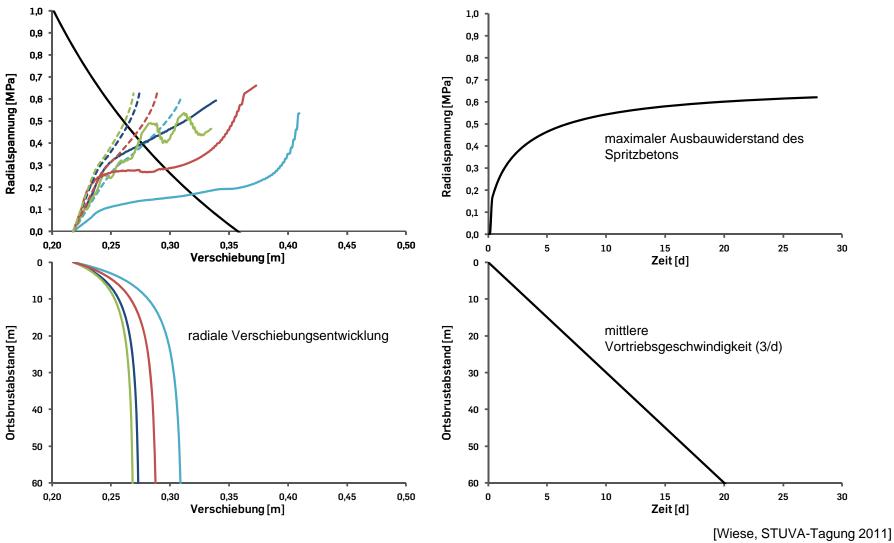
Kennlinienverfahren


- für kreisrunde, tiefliegende Tunnel
- hydrostatischer Primärspannungszustand
- Kombination aus Ausbaucharakteristik,
 Verschiebungsentwicklung infolge des Vortriebs,
 zeitabhängiger Spritzbetonfestigkeit

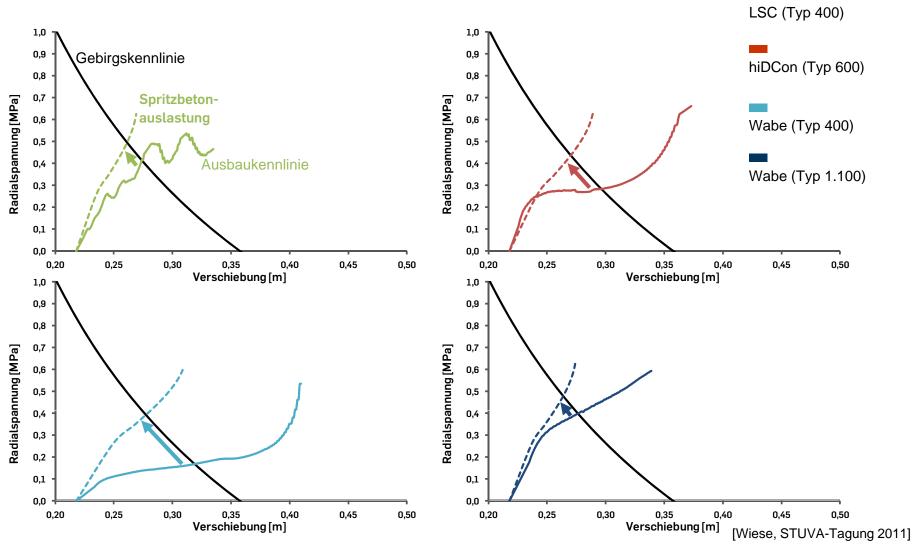
Neues Bemessungsverfahren

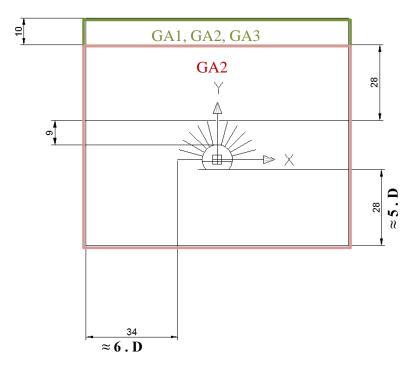
- Großteil der Verschiebungen wird durch Stauchelemente "absorbiert"
- relative Scherverschiebung zwischen Spritzbetonschale und Gebirge sowie Scherbeanspruchung der Anker
- Setzungen der Kalottenfüße

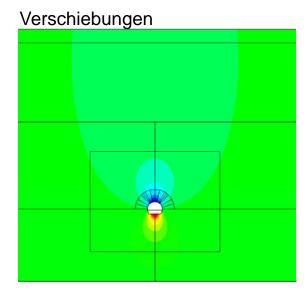
[Sulem, Panet, Guenot, 1987]

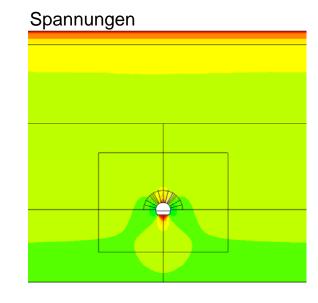


[nach Radoncic, Schubert, 2011]


Kennlinienverfahren


Kennlinienverfahren





Numerische Berechnungen

- FE-Modellierung mit DIANA
- Modell Tauerntunnel
- Versuchsdaten der Stauchelemente werden linearisiert berücksichtigt

- Motivation
- Vorgehen
- Versuche
- Berechnungen
- Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

Ergebnisse

- aus den Versuchen...
 - Systemverhalten der Stauchelemente
 - Spritzbetonfestigkeitsentwicklung gegen Spritzrichtung
- aus den analytischen Berechnungen...
 - Vergleichbarkeit der Elementtypen über Einbindung des Systemverhaltens der Stauchelemente
- aus den numerischen Berechnungen...
 - Verschiebungsentwicklungen
 - > Einfluss tektonischer Störungen

Zusammenfassung und Ausblick

Ausblick

- zu den Versuchen...
 - Spritzbetonversuche mit Rezeptur Tauerntunnel zur Bestimmung des Materialverhaltens
- zu den analytischen Berechnungen...
 - Beurteilung zur bestmöglichen Beschreibung des Gebirges beim Kennlinienverfahren
 - Aufbereitung der Vor- und Nachteile beider Verfahren
- zu den numerischen Berechnungen...
 - Weiterentwicklung des Modells
 - Einbindung verschiedener Stoffgesetze
 - Implementierung der Versuchsergebnisse

